Industry,Use,Systematic trading,Neural networks

Industry

The industry is globally represented by the International Federation of Technical Analysts (IFTA), which is a Federation of regional and national organizations and the Market Technicians Association (MTA). In the United States, the industry is represented by both the Market Technicians Association (MTA) and the American Association of Professional Technical Analysts (AAPTA). The United States is also represented by the Technical Security Analysts Association of San Francisco (TSAASF). In the United Kingdom, the industry is represented by the Society of Technical Analysts (STA). In Canada the industry is represented by the Canadian Society of Technical Analysts. Some other national professional technical analysis organizations are noted in the external links section below.
Professional technical analysis societies have worked on creating a body of knowledge that describes the field of Technical Analysis. A body of knowledge is central to the field as a way of defining how and why technical analysis may work. It can then be used by academia, as well as regulatory bodies, in developing proper research and standards for the field. The Market Technicians Association (MTA) has published a body of knowledge, which is the structure for the MTA's Chartered Market Technician (CMT) exam.

 Use

Traders generally share the view that trading in the direction of the trend is the most effective means to be profitable in financial or commodities markets. John W. Henry, Larry Hite, Ed Seykota, Richard Dennis, William Eckhardt, Victor Sperandeo, Michael Marcus and Paul Tudor Jones (some of the so-called Market Wizards in the popular book of the same name by Jack D. Schwager) have each amassed massive fortunes via the use of technical analysis and its concepts. George Lane, a technical analyst, coined one of the most popular phrases on Wall Street, "The trend is your friend!"
Many non-arbitrage algorithmic trading systems rely on the idea of trend-following, as do many hedge funds. A relatively recent trend, both in research and industrial practice, has been the development of increasingly sophisticated automated trading strategies. These often rely on underlying technical analysis principles (see algorithmic trading article for an overview).

 Systematic trading

 Neural networks

Since the early 1990s when the first practically usable types emerged, artificial neural networks (ANNs) have rapidly grown in popularity. They are artificial intelligence adaptive software systems that have been inspired by how biological neural networks work. They are used because they can learn to detect complex patterns in data. In mathematical terms, they are universal function approximators,[21][22] meaning that given the right data and configured correctly, they can capture and model any input-output relationships. This not only removes the need for human interpretation of charts or the series of rules for generating entry/exit signals, but also provides a bridge to fundamental analysis, as the variables used in fundamental analysis can be used as input.
As ANNs are essentially non-linear statistical models, their accuracy and prediction capabilities can be both mathematically and empirically tested. In various studies, authors have claimed that neural networks used for generating trading signals given various technical and fundamental inputs have significantly outperformed buy-hold strategies as well as traditional linear technical analysis methods when combined with rule-based expert systems.[23][24][25]
While the advanced mathematical nature of such adaptive systems has kept neural networks for financial analysis mostly within academic research circles, in recent years more user friendly neural network software has made the technology more accessible to traders. However, large-scale application is problematic because of the problem of matching the correct neural topology to the market being studied.

 Rule-based trading

Rule-based trading is an approach intended to create trading plans using strict and clear-cut rules. Unlike some other technical methods and the approach of fundamental analysis, it defines a set of rules that determine all trades, leaving minimal discretion. The theory behind this approach is that by following a distinct set of trading rules you will reduce the number of poor decisions, which are often emotion based.
For instance, a trader might make a set of rules stating that he will take a long position whenever the price of a particular instrument closes above its 50-day moving average, and shorting it whenever it drops below.

Combination with other market forecast methods

John Murphy states that the principal sources of information available to technicians are price, volume and open interest.[26] Other data, such as indicators and sentiment analysis, are considered secondary.
However, many technical analysts reach outside pure technical analysis, combining other market forecast methods with their technical work. One advocate for this approach is John Bollinger, who coined the term rational analysis in the middle 1980s for the intersection of technical analysis and fundamental analysis.[1] Another such approach, fusion analysis, [2] overlays fundamental analysis with technical, in an attempt to improve portfolio manager performance.
Technical analysis is also often combined with quantitative analysis and economics. For example, neural networks may be used to help identify intermarket relationships.[3] A few market forecasters combine financial astrology with technical analysis. Chris Carolan's article "Autumn Panics and Calendar Phenomenon", which won the Market Technicians Association Dow Award for best technical analysis paper in 1998, demonstrates how technical analysis and lunar cycles can be combined.[4] Calendar phenomena, such as the January effect in the stock market, are generally believed to be caused by tax and accounting related transactions, and are not related to the subject of financial astrology.
Investor and newsletter polls, and magazine cover sentiment indicators, are also used by technical analysts.[5]

Empirical evidence

Whether technical analysis actually works is a matter of controversy. Methods vary greatly, and different technical analysts can sometimes make contradictory predictions from the same data. Many investors claim that they experience positive returns, but academic appraisals often find that it has little predictive power.[27] Modern studies may be more positive: of 95 modern studies, 56 concluded that technical analysis had positive results, although data-snooping bias and other problems make the analysis difficult.[6] Nonlinear prediction using neural networks occasionally produces statistically significant prediction results.[28] A Federal Reserve[14] regarding working papersupport and resistance levels in short-term foreign exchange rates "offers strong evidence that the levels help to predict intraday trend interruptions," although the "predictive power" of those levels was "found to vary across the exchange rates and firms examined".
Technical trading strategies were found to be effective in the Chinese marketplace by a recent study that states, "Finally, we find significant positive returns on buy trades generated by the contrarian version of the moving average crossover rule, the channel breakout rule, and the Bollinger band trading rule, after accounting for transaction costs of 0.50 percent."[29]
An influential 1992 study by Brock et al. which appeared to find support for technical trading rules was tested for data snooping and other problems in 1999;[30] the sample covered by Brock et al. was robust to data snooping.
Subsequently, a comprehensive study of the question by Amsterdam economist Gerwin Griffioen concludes that: "for the U.S., Japanese and most Western European stock market indices the recursive out-of-sample forecasting procedure does not show to be profitable, after implementing little transaction costs. Moreover, for sufficiently high transaction costs it is found, by estimating CAPMs, that technical trading shows no statistically significant risk-corrected out-of-sample forecasting power for almost all of the stock market indices."[9] Transaction costs are particularly applicable to "momentum strategies"; a comprehensive 1996 review of the data and studies concluded that even small transaction costs would lead to an inability to capture any excess from such strategies.[31]
In a paper published in the Journal of Finance, Dr. Andrew W. Lo, director MIT Laboratory for Financial Engineering, working with Harry Mamaysky and Jiang Wang found that "Technical analysis, also known as "charting," has been a part of financial practice for many decades, but this discipline has not received the same level of academic scrutiny and acceptance as more traditional approaches such as fundamental analysis. One of the main obstacles is the highly subjective nature of technical analysis—the presence of geometric shapes in historical price charts is often in the eyes of the beholder. In this paper, we propose a systematic and automatic approach to technical pattern recognition using nonparametric kernel regression, and apply this method to a large number of U.S. stocks from 1962 to 1996 to evaluate the effectiveness of technical analysis. By comparing the unconditional empirical distribution of daily stock returns to the conditional distribution—conditioned on specific technical indicators such as head-and-shoulders or double-bottoms—we find that over the 31-year sample period, several technical indicators do provide incremental information and may have some practical value."[32] In that same paper Dr. Lo wrote that "several academic studies suggest that ... technical analysis may well be an effective means for extracting useful information from market prices."[33] Some techniques such as Drummond Geometry attempt to overcome the past data bias by projecting support and resistance levels from differing time frames into the near-term future and combining that with reversion to the mean techniques.[34]

0 comments:

Post a Comment